
OSGiLarva: A Monitoring System
Supporting OSGi’s Dynamicity

OSGiLarvaOSGiLarva: A Monitoring System : A Monitoring System
Supporting Supporting OSGiOSGi’’ss DynamicityDynamicity

Yufang Dan1,4, Nicolas Stouls1, Christian Colombo2, and Stéphane Frénot3

1.Université de Lyon, INSA-Lyon, CITI- INRIA F-69621, Villeurbanne, France-Email: first.second@insa-lyon.fr
2. Department of Computer Science, University of Malta-Email:first.second@um.edu.mt

3. Université de Lyon, INRIA, INSA-Lyon, CITI- INRIA F-69621, Villeurbanne, France-Email: first.second@insa-lyon.fr
4. College of Computer Science, Chongqing University, Chongqing, China

Dynamic Service-Oriented Architecture System(DSOAS)

Conclusion
The proposed monitoring system can be binded in DSOAS with dynamicity resilience and comprehensivenes. When service substitutes during runtime,
the monitor and the state of the substituted service can be kept in memory. It doesn’t like the Aspect-oriented programming technique monitoring tool. Our
monitoring tool can keep the original byte-code unchanged. We have also made our property description having more dynamicity. Property file is
composed by instance property and class property, and authorized the use of framework events in it.

Perspectives:
1. Reduce our monitor time cost., 2. Do request time compliant with AspectJ technology. 3. To make multiple interfaces in property description. 4. To add
call parameters in property description

OSGiLarva tool:
Based on LogOs and Larva tool

• LogOs: OSGi Logging tool
• Larva: Java monitoring tool

A dynamic runtime monitoring
• Dynamicity resilience
• Comprehensiveness

Dynamicity in property description

Service-Oriented Architecture(SOA):
Loosely coupled client-server through

interfaces
Service

Client dynamically requests for a service
Client use the service

Characteristics of OSGi:
Dynamic module system
Self-contained unit: Bundle
Life-cycle management of bundles:
Install, start, stop,update and uninstall
Without requiring a reboot system when bundle state changed.

Objective of this work: To design a monitor supporting dynamic service-oriented
architectures, which can check whether the client’s behavior is authorized to perform
or not.

Dynamicity in property description:

References
C, Colombo, G. J. Pace, and G. Schneider, «Larva-

safer monitoring of real-time java programs», in
SEFM, 2009

Stephane Frenot and Julien Ponge, «LogOs: an
Automatic Logging Framework for Service-Oriented
Architectures», in SEAA’12, Izmir, Turquie, Sep.
2012.[Online]. Available: http://hal.inria.fr/hal-
00709534

Yufang Dan, Nicolas Stouls, Stephane Frenot,
Christian Colombo, «A Monitoring approach for
Dynamic Service-Oriented Architecture Systems», in
SERVICE COMPUTATION 2012, pp. 20-23

In the recent developed monitoring tools:The scope of property
description in a monitor:

Client side
Interface side
Service implementation

side

JavaMOP and Larva tools
• Java monitoring tools
• Relies on AspectJ for monitor
injection
• Property described by the
monitored system

Proposition: A monitor for dynamic systems needs to be resilient to dynamicity and comprehensive and has to give
the possibility to express properties with an adapted scope as well as in terms of framework events.

Three kinds of tests to analyze performance of OSGiLarva:
Monitoring cost by using a proxy(OSGiLarva VS Larva)
OSGiLarva efficiency(OSGi VS OSGiLarva)
Overhead associated to get the caller Id

A monitoring system
supporting OSGi’s Dynamicity

Property description language:

Life-cycle of Bundles

Simulation settings
Two examples: one without dynamicity and another with dynamicity
A loop on the client side:

• The client gets service and has the first call to the requested service
• Next, the client unregisters this service and registers the second

service.
• And then, the client gets the second service and has the second call

to this serivce.
• Finally, the client unregisters the second service and registers the

first service.

OSGiLarva Implementation:

ContextContextContext

MotivationMotivationMotivation A Dynamic behaviral monitoring bindings in DSOAS

A DSOAS with a traditional monitor:

PropositionPropositionProposition ResultsResultsResults

DiscussionsDiscussionsDiscussions

Logging System
• Kept out of the logged system
• Made a loosely links
• Property described the written
logs on logging system

Auth()

UnAuth()

UnReg()

s0

s1

s2Lock()

UnLock()

SomeUse()

s2

s2

 UnReg()

GetService()

Auth()

s0 s1

Lock()

UnLock()

SomeUse()

clock\timer>=timerout\timer.reset()

• Instance property
• Framework event primitives

• Class property

Inter
face

Client1

Client2
Service2

Service1

Interface
side

property

Client
side

property
Service

side
property

Service
side

propertyClient
side

property

...Client

Service1

Service 2

Sub-
System

access

Interface:
Auth();
Lock();

SomeUse();
UnLock();
UnAuth();

Request

...Client

Service1

Service 2

Sub-
System

access

Interface:
Auth();
Lock();

SomeUse();
UnLock();
UnAuth();

Request

INSTALLED STARTING

UNINSTALLED

ACTIVE

STOPPING

RESOLVED

Start

Stop

Invocation
Event

OSGiLarva

Framework
Event

Service Registration
Get ServiceRequest

Service

Invocation
Event

Service
Unregistration

Implementation

 Larva Property checking

Client

OSGi Service
Management

System

LogOs Framework Proxy

LogOs
Dynamic

Proxy

Class PropertyInstance Property

Interface

Service

0 10000000 20000000 30000000 40000000 50000000

-4

-3

-2

-1

0

1

2

3

C
os

tr
at

io
(%

)

Loop runs

OSGiLarva/Larva

0 5000 10000 15000 20000 25000

0

2

4

6

8

10

12

14

C
os

tr
at

io
(%

)

Loop runs

OSGiLarvaWithPID/OSGiLarvaWithoutPID

0 5000 10000 15000 20000 25000

16

18

20

22

24

26

C
os

tr
at

io
(%

)

Loop runs

With OSGiLarva/Without OSGiLarva

0 5000000 10000000
25

30

35

40

C
os

tr
at

io
(%

)

Loop runs

OSGiLarva/OSGi

Hello1/Hello2(Without Dynamicity)Hello1/Hello2(Without Dynamicity)
Hello1/Hello2(WithDynamicity)Hello1/Hello2(WithDynamicity)

Hello/test Prime (Without Dynamicity)Hello/test Prime (Without Dynamicity)
Hello1/Hello2(With Dynamicity)Hello1/Hello2(With Dynamicity)

GLOBAL{
VARIABLES{ … } EVENTS{ … }
PROPERTY P1{

%% Class property (same as Larva)
STATES { … }
TRANSITIONS { … }}
%% Introduction of this new keyword
FOREACHCLIENT(Long pid, String s){

%%Instance property { … }
VARIABLES { … }
EVENTS{

%% Just an event desription
someEvent()=frameworkEvent();
anotherEvent()=someMethod();
… }

PROPERTY P2{
STATES{ … }
TRANSITIONS{ … }}}}

