OSGilLarva: A Monitoring System

Supporting OSGI’s, Dynamicity

Yufang Dan'+4, Nicolas Stouls!, Christian Colombo?, and Stephane Frénot?

]1.Universite de Lyon, INSA-Lyon, CITI- INRIA F-69621, Villeurbanne, France-Email: first.second@insa-lyon.fr

2. Department of Computer Science, University of Malta-Email:first.second@um.edu.mt
3. Université de Lyon, INRIA, INSA-Lyon, CITI- INRIA F-69621, Villeurbanne, France-Email: first.second@insa-Ilyon.fr
4. College of Computer Science, Chongging University, Chongqging, China

COnteXt Dynamic Service-Oriented Architecture System(DSOAS)

4< INSTALLED) tar P(STARTING)
Service-Oriented Architecture(SOA): Characteristics of OSGi: I i i
> Loosely coupled client-server through » Dynamic module system (aesorves (rome)
Nterfaces > Self-contained unit: Bundle P
> Service » Life-cycle management of bundles: l LS“’P
> Client dynamically requests for a service Install, start, stop,update and uninstall iy [storenG)
> Client use the service » Without requiring a reboot system when bundle state changed.
Life-cycle of Bundles

Interface:
. e | om0 | . won [o Objective of this work: To design a monitor supporting dynamic service-oriented

ok architectures, which can check whether the client’s behavior is authorized to perform

o or not.

/

The scope of property In the recent developed monitoring tools:

A DSOAS with a traditional monitor: description in a monitor:

»JavaMOP and Larva tools J>Logging System

»Client side - Java monitoring tools - Kept out of the logged system
| ' > Interface side Relies on AspectdJ for monitor * Made a loosely links
Infurtﬁ?fe‘ % > Service implementation injection - Property described the written
Lock(): | | weeess 1 sub. side * Property described by the logs on logging system
o, TR st monitored system
UnAuth(); i
o Proposition: A monitor for dynamic systems needs to be resilient to dynamicity and comprehensive and has to give
the possibility to express properties with an adapted scope as well as in terms of framework events.

/
| | = =
P o p 0OS |t| 0] o || A monitoring system
| | l, | | | |
supporting OSGi’s Dynamicit
pp g y M Three kinds of tests to analyze performance of OSGiLarva:
OSGilLarva tool: Property description language: > Monitoring cost by using a proxy(OSGilLarva VS Larva)
»Based on LogOs and Larva tool SLOBALI > OSGilarva efficiency(OSGi VS OSGilarva)
» LogOs: OSGi Logging tool VARIABLES{ . } EVENTS{ . } » Overhead associated to get the caller Id
e Larva: Java monitoring tool PROPERTY P1{ - , :
> A dynamic runtime m%nitorin oy Class property (ssme as Larva) Simulation settings
5 ynar o | 9 STATES { .. } » Two examples: one without dynamicity and another with dynamicity
* Dynamicity resilience TRANSITIONS { .. }} : .

° COmprehenSiveneSS %% Introduction of this new keyword > A IOOp. on the C“ent _Slde' _ _
5D L q oo FOREACHCLIENT (Long pid, String s) { « The client gets service and has the first call to the requested service
ynamicity in property description ;;;n:gfgg FErOPe}rtY {0} « Next, the client unregisters this service and registers the second
EVENTS { service.

Dynamicity in property description: %% Jt;st in()ex;ent desi;ptic::n() * And then, the client gets the second service and has the second call
somenven =Iramewor ven ’ . .
anotherEvent () =someMethod () ; tO thlS Serivce.
’ ::nstance PIIOPerty) Finally, the client unregisters the second service and registers the
 Framework event primitives PROPERTY P2{ - -
p STATES{ .. } fIrSt SCIVICE. | —=— OSGiLarvaWithPID/OSGiLarvaWithoutPID |
SomeUse() TRANSITIONS{ .. }}}} > |_—=—OSGilanallana | " Hello1/Hello2(WithDynamicity)

Hello1/Hello2(Without Dynamicity)

2]

-
N
1 "

1

-
o
" 1 "

OSGilLarva Implementation:

o
L

UnReg()

T T 7 T 7 T 7 T 7 T 1 Loop runs
i (10000000 20000000 30000000 40000000 50000000
]

] -/

] .
. . .
Alnstance Property Larva Property checking | Class Property] _/ _/

A8 d T 77—
5000 10000 15000 20000 25000

Cost ratio(%)

Cost ratio(%)
o N EN » oo
1 " 1 " 1 " 1 " 1

1
-
1

OSGiLarva

N

]
w

GetServiee()

1
N
L
o

L
Interface oop TS
Invoca tion Invoca tion
Event Event Implementation _ ’ —u— With OSGiLarva/Without OSGiLarva \ 407
Client LogOs - | Hello1/Hello2(With Dynamicity) i —#— OSGiLarva/OSGi
Dynamic Service ' Hello/test Prime (Without Dynamicity) i
» Class property Proxy \ !
' Service .\'\./-/' -~] u = ___—"n
(et Service Unregls?v/ Service Registration :\‘; 22 § . \ /) \.
N .

ke =

omeUse () /\ng\Frameworg/I/m/k{ © £

Framework 2 204 8

Event @ S O 30
18
OSGi Service
16 -
Management X
5 | T T T]
. . System Y 5000 10000 15000 20000 25000 0 5000000 10000000
clock\timer>=timerout\timer.reset() O %000 10000 15000 20000 29000
Loop runs Loop runs

— / |

<

References
»C, Colombo, G. J. Pace, and G. Schneider, «Larva-

Conclusion safer monitoring of real-time java programsy, in
The proposed monitoring system can be binded in DSOAS with dynamicity resilience and comprehensivenes. When service substitutes during runtime, SEFM, 2009

. _ _ LS » Stephane Frenot and Julien Ponge, «LogOs: an
the monitor and the state of the substituted service can be kept in memory. It doesn’t like the Aspect-oriented programming technique monitoring tool. Our Autorﬁatic Logging Framework for%ervice%riented

monitoring tool can keep the original byte-code unchanged. We have also made our property description having more dynamicity. Property file is Architectures», in SEAA’12, Izmir, Turquie, Sep.
composed by instance property and class property, and authorized the use of framework events in it. gg;gé[ggdlrine]- Available: http://hal.inria.fr/hal-
. »Yufang Dan, Nicolas Stouls, Stephane Frenot,
Perspectlves: Christian Colombo, «A Monitoring approach for
1. Reduce our monitor time cost., 2. Do request time compliant with AspectdJ technology. 3. To make multiple interfaces in property description. 4. To add Dynamic Service-Oriented Architecture Systems», in
\ call parameters in property description SERVICE COMPUTATION 2012, pp. 20-23 /

. , . e®®e @ COMMUNAUTES INNOVATIONS e®®e : COMMUNAUTES

informatics g mathematics ;) ' :

i~ QFC EE @ w5
® : Rhone\lpes ET DYNAMIQUES URBAINES ® : Rhonellpes

