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COnteXt Dynamic Service-Oriented Architecture System(DSOAS)

4< INSTALLED ) tar P( STARTING )
Service-Oriented Architecture(SOA): Characteristics of OSGi: I i i
> Loosely coupled client-server through » Dynamic module system (aesorves (rome )
Nterfaces > Self-contained unit: Bundle P
> Service » Life-cycle management of bundles: l LS“’P
> Client dynamically requests for a service Install, start, stop,update and uninstall iy [ storenG )
> Client use the service » Without requiring a reboot system when bundle state changed.
Life-cycle of Bundles

Interface:
. e | om0 | . won [ o Objective of this work: To design a monitor supporting dynamic service-oriented

ok architectures, which can check whether the client’s behavior is authorized to perform

o or not.
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The scope of property In the recent developed monitoring tools:

A DSOAS with a traditional monitor: description in a monitor:

»JavaMOP and Larva tools J>Logging System

»Client side - Java monitoring tools - Kept out of the logged system
| ' > Interface side  Relies on AspectdJ for monitor * Made a loosely links
Infurtﬁ?fe‘ % > Service implementation injection - Property described the written
Lock(): | | weeess 1 sub. side * Property described by the logs on logging system
o, TR st monitored system
UnAuth(); i
o Proposition: A monitor for dynamic systems needs to be resilient to dynamicity and comprehensive and has to give
the possibility to express properties with an adapted scope as well as in terms of framework events.
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supporting OSGi’s Dynamicit
pp g y M Three kinds of tests to analyze performance of OSGiLarva:
OSGilLarva tool: Property description language: > Monitoring cost by using a proxy(OSGilLarva VS Larva)
»Based on LogOs and Larva tool SLOBALI > OSGilarva efficiency(OSGi VS OSGilarva)
» LogOs: OSGi Logging tool VARIABLES{ . } EVENTS{ . } » Overhead associated to get the caller Id
e Larva: Java monitoring tool PROPERTY P1{ - , :
> A dynamic runtime m%nitorin oy Class property (ssme as Larva) Simulation settings
5 ynar o | 9 STATES { .. } » Two examples: one without dynamicity and another with dynamicity
* Dynamicity resilience TRANSITIONS { .. }} : .

° COmprehenSiveneSS %% Introduction of this new keyword > A IOOp. on the C“ent _Slde' _ _
5D L q oo FOREACHCLIENT (Long pid, String s) { « The client gets service and has the first call to the requested service
ynamicity in property description ;;;n:gfgg FErOPe}rtY {0} « Next, the client unregisters this service and registers the second
EVENTS { service.

Dynamicity in property description: %% Jt;st in()ex;ent desi;ptic::n() * And then, the client gets the second service and has the second call
somenven =Iramewor ven ’ . .
anotherEvent () =someMethod () ; tO thlS Serivce.
’ ::nstance PIIOPerty )  Finally, the client unregisters the second service and registers the
 Framework event primitives PROPERTY P2{ - -
p STATES{ .. } fIrSt SCIVICE. | —=— OSGiLarvaWithPID/OSGiLarvaWithoutPID |
SomeUse() TRANSITIONS{ .. }}}} > |_—=—OSGilanallana | " Hello1/Hello2(WithDynamicity)

Hello1/Hello2(Without Dynamicity)
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OSGilLarva Implementation:
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