
Runtime Verification
of

Component-based Systems

Yliès Falcone1, Mohamad Jaber2, Thanh-Hung Nguyen2,
Marius Bozga2, and Saddek Bensalem2

1LIG – 2Verimag
-

Université Joseph Fourier

SEMBA - Valence - October 21, 2011

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 1 / 26



Challenges

Computer systems are everywhere

Bugs too!!

How to build complex systems
that behave in a correct manner?

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 2 / 26



Challenges

Computer systems are everywhere

Bugs too!!

How to build complex systems
that behave in a correct manner?

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 2 / 26



Component-based Approach for System Design

lg eu

S
C1 C2 Cn. . . |= P?

Principles:

builds complex systems by assembling components

reuses existing components, known properties

provides flexibility in the construction phase

helps to cope with complexity

How to verify/check : S = glue(C1, . . . ,Cn) |= P?

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 3 / 26



Component-based Approach for System Design

lg eu

S
C1 C2 Cn. . . |= P?

Principles:

builds complex systems by assembling components

reuses existing components, known properties

provides flexibility in the construction phase

helps to cope with complexity

How to verify/check : S = glue(C1, . . . ,Cn) |= P?

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 3 / 26



How to Ensure/Check Correctness?

Static Verification Techniques

Mathematical techniques to prove or disprove the correctness of a design
w.r.t. a given property
(e.g., static analysis, model checking, . . . )

Limitations (for Component-Based Systems)

State space explosion!

Black box component

Interaction with unknown environment (x = read();)

Adopted Solution: Runtime Verification (RV)

Checking P while the system is running

“Bridges the gap” between static verification and testing

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 4 / 26



How to Ensure/Check Correctness?

Static Verification Techniques

Mathematical techniques to prove or disprove the correctness of a design
w.r.t. a given property
(e.g., static analysis, model checking, . . . )

Limitations (for Component-Based Systems)

State space explosion!

Black box component

Interaction with unknown environment (x = read();)

Adopted Solution: Runtime Verification (RV)

Checking P while the system is running

“Bridges the gap” between static verification and testing

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 4 / 26



How to Ensure/Check Correctness?

Static Verification Techniques

Mathematical techniques to prove or disprove the correctness of a design
w.r.t. a given property
(e.g., static analysis, model checking, . . . )

Limitations (for Component-Based Systems)

State space explosion!

Black box component

Interaction with unknown environment (x = read();)

Adopted Solution: Runtime Verification (RV)

Checking P while the system is running

“Bridges the gap” between static verification and testing

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 4 / 26



Outline

1 The BIP Framework

2 An RV Framework for Component-Based Systems

3 Verifying the Runtime Behavior of BIP Systems

4 Experimental Results

5 Discussion

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 5 / 26



The BIP Framework

Outline

1 The BIP Framework

2 An RV Framework for Component-Based Systems

3 Verifying the Runtime Behavior of BIP Systems

4 Experimental Results

5 Discussion

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 6 / 26



The BIP Framework

The BIP Framework

BIP is a component framework for modeling heterogeneous systems

Layered Component Model

Behavior - automata extended with data and communication ports

Interactions - set of interactions

Priorities - partial order on interactions

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 7 / 26



The BIP Framework

Behavior

Atomic Component

Labelled Transition System with data:

ports, e.g, {a, b}
control locations, e.g, {l1, l2}
variables, e.g, {x}
transitions

guards, e.g., x > 0
variable modifications (with external
functions), e.g., x := f (x)

return ∗ p;

while (...) {

b

x := f (x)
x > 0

l1

l2

a

a b

x

int f (int x) {
int ∗ p;

. . . ;

}

}

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 8 / 26



The BIP Framework

Interactions and Connectors: Communication

Ports can be either synchron (•) or trigger (N)
b a

Interaction (= “a communication/collaboration”)

An interaction is defined as a set of ports

Connector

A connector is used to specify a set of interactions

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 9 / 26



The BIP Framework

Interactions and Connectors: Communication

Ports can be either synchron (•) or trigger (N)
b a

Interaction (= “a communication/collaboration”)

An interaction is defined as a set of ports

Connector

A connector is used to specify a set of interactions

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 9 / 26



The BIP Framework

Interactions and Connectors: Communication

Ports can be either synchron (•) or trigger (N)
b a

Interaction (= “a communication/collaboration”)

An interaction is defined as a set of ports

Connector

A connector is used to specify a set of interactions

a b c

RendezVous, the only possible interaction is: abc

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 9 / 26



The BIP Framework

Interactions and Connectors: Communication

Ports can be either synchron (•) or trigger (N)
b a

Interaction (= “a communication/collaboration”)

An interaction is defined as a set of ports

Connector

A connector is used to specify a set of interactions

a b c

Broadcast, possible interactions are: a,ab,ac,abc

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 9 / 26



The BIP Framework

Interactions and Connectors: Communication

Ports can be either synchron (•) or trigger (N)
b a

Interaction (= “a communication/collaboration”)

An interaction is defined as a set of ports

Connector

A connector is used to specify a set of interactions

a b c

Broadcast, possible interactions are: a,ab,ac,abc

Bliudze and Sifakis
Strong formalization of the Algebra of Connectors

Interactions and priorities encompass the
universal glue

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 9 / 26



The BIP Framework

Composite component

Composite component

available atomic components + connectors + priority rules

N

E

E

N

I

G

I1 I2 I3

Priority : I2 < I3

Engine Protocol

1 Atoms notify the engine of
their active ports

2 The engine enumerates the
allowed interactions

3 Filters out low priority ones

4 Picks one among those left

5 Notifies the atoms

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 10 / 26



The BIP Framework

Composite component

Composite component

available atomic components + connectors + priority rules

N

E

E

N

I

G

I1 I2 I3

Priority : I2 < I3

Engine Protocol

1 Atoms notify the engine of
their active ports

2 The engine enumerates the
allowed interactions

3 Filters out low priority ones

4 Picks one among those left

5 Notifies the atoms

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 10 / 26



The BIP Framework

Composite component

Composite component

available atomic components + connectors + priority rules

N

E

E

N

I

G

I1 I2 I3

Priority : I2 < I3

Engine Protocol

1 Atoms notify the engine of
their active ports

2 The engine enumerates the
allowed interactions

3 Filters out low priority ones

4 Picks one among those left

5 Notifies the atoms

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 10 / 26



The BIP Framework

Composite component

Composite component

available atomic components + connectors + priority rules

N

E

E

N

I

G

I1 I2 I3

Priority : I2 < I3

Engine Protocol

1 Atoms notify the engine of
their active ports

2 The engine enumerates the
allowed interactions

3 Filters out low priority ones

4 Picks one among those left

5 Notifies the atoms

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 10 / 26



The BIP Framework

Composite component

Composite component

available atomic components + connectors + priority rules

N

E

E

N

I

G

I1 I2 I3

Priority : I2 < I3

Engine Protocol

1 Atoms notify the engine of
their active ports

2 The engine enumerates the
allowed interactions

3 Filters out low priority ones

4 Picks one among those left

5 Notifies the atoms

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 10 / 26



An RV Framework for Component-Based Systems

Outline

1 The BIP Framework

2 An RV Framework for Component-Based Systems

3 Verifying the Runtime Behavior of BIP Systems

4 Experimental Results

5 Discussion

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 11 / 26



An RV Framework for Component-Based Systems

Monitoring a specification in the context of BIP systems

Specification = a desired behavior

state-based

linear-time

e.g., “in component B1, x > 0 if in component B2 y < 0”

Verification Monitor

finite-state machine with an output function

expressive: any linear-time spec using 4-valued truth-domain

generic: one can plug its own monitor synthesis algorithm

execute in a lock-step manner with monitored system

abstracts the original execution

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 12 / 26



An RV Framework for Component-Based Systems

Abstracting the original execution of the system

ϕ↔ Mϕ(C2.port5 ,Ci .var6 , . . . ,Cn.location)

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 13 / 26



An RV Framework for Component-Based Systems

Abstracting the original execution of the system

ϕ↔ Mϕ(C2.port5 ,Ci .var6 , . . . ,Cn.location)

Component 2 Component i Component n

locationlocationlocation

ports

Component 1

vars

location

ports

vars

location

ports

vars

ports

vars

Monitorϕ

. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 13 / 26



An RV Framework for Component-Based Systems

Abstracting the original execution of the system

ϕ↔ Mϕ(C2.port5 ,Ci .var6 , . . . ,Cn.location)

Component 2 Component i Component n

locationlocationlocation

ports

Component 1

vars

location

ports

vars

location

ports

vars

ports

vars

location

Monitorϕ

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

The least informative function in⋃
Ci∈Components Ci .vars ∪ Ci .ports ∪ {locationi} → Data

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 13 / 26



An RV Framework for Component-Based Systems

Abstracting the original execution of the system

ϕ↔ Mϕ(C2.port5 ,Ci .var6 , . . . ,Cn.location)

Component 2 Component i Component n

locationlocationlocation

ports

Component 1

vars

location

ports

vars

location

ports

vars

ports

vars

location

Monitorϕ

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

Preserves property evaluation: sound and complete

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 13 / 26



Verifying the Runtime Behavior of BIP Systems

Outline

1 The BIP Framework

2 An RV Framework for Component-Based Systems

3 Verifying the Runtime Behavior of BIP Systems

4 Experimental Results

5 Discussion

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 14 / 26



Verifying the Runtime Behavior of BIP Systems

Overview

Integrating an abstract monitor into a BIP system

BIP Monitor

2

(.XML)

3

Extraction

1

Connections

4

BIP Monitor

Monitor
Building

Components

To Monitor
Variables

Atomic
Transformation

Abstract

Monitor

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 15 / 26



Verifying the Runtime Behavior of BIP Systems

Step 1: Extraction of needed information

Extraction

1

Components

To Monitor
Variables

Abstract

Monitor(.XML)

Retrieve from the monitor definition the needed information for each
component to monitor the specification

First step in the implementation of the abstraction function

Outcome: a mapping Components → {vars, state, . . .}

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 16 / 26



Verifying the Runtime Behavior of BIP Systems

Step 2: Instrumentation of atomic components

Instrument each component so that
it can interact with the monitor

2

Components

To Monitor
Variables

Atomic
Transformation

done

port:="p1"

done:=0;

loc portdone

done:=0 Instrumentation

loc:="l0"

pm

p1

l0

p1

l1
l0 lτ0

l1
p1

p1
pm

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 17 / 26



Verifying the Runtime Behavior of BIP Systems

Step 3: Turning an abstract monitor into a BIP monitor

Abstract monitor (.XML) → Atomic component

interacts with other instrumented components

produces verdicts following the behavior of the original monitor

<VerificationMonitor>

<State id="s1" initial="true">

<Transition event="e1" nextState="s1" output="currently true"/>

<Transition event="not e1" nextState="s2" output="false"/>

</State>

<State id="s2">

<Transition event="true" nextState="s2" output="false"/>

</State>

</VerificationMonitor>

print("currently true"); print("false");

print(”false”);

pm

comp1 port

pm

[e1]
pintern

pintern

[not e1]
pintern

[true]
pintern

s1 sm1 s2 sm2pm

3

BIP Monitor

Monitor
Building

Abstract

Monitor(.XML)

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 18 / 26



Verifying the Runtime Behavior of BIP Systems

Step 4: Connections

Connects instrumented components and the BIP monitor

BIP Monitor

Connections

4

BIP Monitor

γ2 > γ3, γ4

γ1 > γ3, γ4

γ3 γ4

γ1 pm
γ2

pm
pintern

pmpm

Connectors containing pm and pintern have more priority

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 19 / 26



Verifying the Runtime Behavior of BIP Systems

Summary/Discussion

4-stage approach to introduce an abstract monitor into a BIP system

BIP Monitor

2

(.XML)

3

Extraction

1

Connections

4

BIP Monitor

Monitor
Building

Components

To Monitor
Variables

Atomic
Transformation

Abstract

Monitor

Correctness

Transformation do not modify the data nor the behavior

No deadlock is introduced (monitor always ready)

Fresh-data for the monitor (latest system state)

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 20 / 26



Experimental Results

Outline

1 The BIP Framework

2 An RV Framework for Component-Based Systems

3 Verifying the Runtime Behavior of BIP Systems

4 Experimental Results

5 Discussion

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 21 / 26



Experimental Results

Dala Robot

Dala Robot

A large and realistic interactive system

An infinite system

states
transitions

↪→ cannot be model-checked!

Functional level of Dala = a set of modules

Each module:

a set of services (different tasks)
a set of posters (to exchange data between modules).

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 22 / 26



Experimental Results

Simplified BIP Model of Dala Robot

Components
ProxyInterface: communicates with the control layer using the mailbox

InitService: responsible for the initialization of the module

SetSpeedService: performs the main task of the module

Task

check

l0tick trigger
t = p
t := 0

t < p
t ++

l0 l1

report reportexec

init

tick

trigger

check

l0

l2

l1

l3

l4

trigger
done:=0

start

check

report

finish
done:=1

startexec finish fail

l2l0

l1
start exec

finish

fail

startexec finish fail

doneexec

trigger
report

l0

l2

l1

l3

l4

trigger
done:=0

start

check

report

finish
done:=1

startexec finish fail

l2l0

l1
start exec

finish

fail

startexec finish fail

done

InitService

trigger
trigger

report

report report
report

Controller

Task

Controller

Timer

init
init

exec
exec

Proxy

SetSpeedService

abort
error

fail

exec

abort

error

fail

abort

abort

error error
abort

report abort

ProxyInterface

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 23 / 26



Experimental Results

Experiments: Monitoring some properties on Dala

Execution order: InitService initializes the robot and should be successfully executed
before SetSpeedService sets the speed parameter of the robot

Data freshness: the data read by a service of a module (Reader) must be fresh enough
compared to the moment it has been written (Writer)

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering violated 1.896
ϕ1 2.045 7.8 9.163 383
ϕ2 1.953 3 9.192 384

Data freshness violated 1.638
ϕ3 1.684 2.8 4.337 164
ϕ4 1.682 2.6 3.773 130

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering guaranteed 18.36
ϕ1 19.84 8.0 89 384
ϕ2 18.89 2.8 88.96 384

Data freshness guaranteed 16.34
ϕ3 16.78 2.6 43.83 168
ϕ4 16.90 3.4 37.82 131

Abstraction technique is effective

Monitoring only information in the specification using the abstraction
technique reduces the overhead significantly!

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 24 / 26



Experimental Results

Experiments: Monitoring some properties on Dala

Execution order: InitService initializes the robot and should be successfully executed
before SetSpeedService sets the speed parameter of the robot

Data freshness: the data read by a service of a module (Reader) must be fresh enough
compared to the moment it has been written (Writer)

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering violated 1.896
ϕ1 2.045 7.8 9.163 383
ϕ2 1.953 3 9.192 384

Data freshness violated 1.638
ϕ3 1.684 2.8 4.337 164
ϕ4 1.682 2.6 3.773 130

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering guaranteed 18.36
ϕ1 19.84 8.0 89 384
ϕ2 18.89 2.8 88.96 384

Data freshness guaranteed 16.34
ϕ3 16.78 2.6 43.83 168
ϕ4 16.90 3.4 37.82 131

Abstraction technique is effective

Monitoring only information in the specification using the abstraction
technique reduces the overhead significantly!

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 24 / 26



Experimental Results

Experiments: Monitoring some properties on Dala

Execution order: InitService initializes the robot and should be successfully executed
before SetSpeedService sets the speed parameter of the robot

Data freshness: the data read by a service of a module (Reader) must be fresh enough
compared to the moment it has been written (Writer)

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering violated 1.896
ϕ1 2.045 7.8 9.163 383
ϕ2 1.953 3 9.192 384

Data freshness violated 1.638
ϕ3 1.684 2.8 4.337 164
ϕ4 1.682 2.6 3.773 130

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering guaranteed 18.36
ϕ1 19.84 8.0 89 384
ϕ2 18.89 2.8 88.96 384

Data freshness guaranteed 16.34
ϕ3 16.78 2.6 43.83 168
ϕ4 16.90 3.4 37.82 131

Abstraction technique is effective

Monitoring only information in the specification using the abstraction
technique reduces the overhead significantly!

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 24 / 26



Experimental Results

Experiments: Monitoring some properties on Dala

Execution order: InitService initializes the robot and should be successfully executed
before SetSpeedService sets the speed parameter of the robot

Data freshness: the data read by a service of a module (Reader) must be fresh enough
compared to the moment it has been written (Writer)

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering violated 1.896
ϕ1 2.045 7.8 9.163 383
ϕ2 1.953 3 9.192 384

Data freshness violated 1.638
ϕ3 1.684 2.8 4.337 164
ϕ4 1.682 2.6 3.773 130

time-no-monitor specification optimized not-optimized
time (s) ovhd (%) time (s) ovhd (%)

Ordering guaranteed 18.36
ϕ1 19.84 8.0 89 384
ϕ2 18.89 2.8 88.96 384

Data freshness guaranteed 16.34
ϕ3 16.78 2.6 43.83 168
ϕ4 16.90 3.4 37.82 131

Abstraction technique is effective

Monitoring only information in the specification using the abstraction
technique reduces the overhead significantly!

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 24 / 26



Discussion

Outline

1 The BIP Framework

2 An RV Framework for Component-Based Systems

3 Verifying the Runtime Behavior of BIP Systems

4 Experimental Results

5 Discussion

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 25 / 26



Discussion

Discussion

Summary

Another validation (complementary) technique for CBS (BIP systems)

Based on a general and expressive RV framework

Abstraction of the current system state

Technique scales (realistic and large example)

Monitored real programs (with BIP C-code generator)

Perspectives

Using combination with static analysis for performance optimization

Dynamic instrumentation technique

More elaborated abstraction techniques

Runtime enforcement (going beyond verdict detection)

Yliès Falcone (LIG - UJF) RV of BIP systems 10/21, Valence 26 / 26


