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Challenges in RF test

• High cost Automatic Test Equipment (ATE)

• Long test times due to:
 Large number of RF performances

 Sequential approach to test each performance (switching between test configurations, 
application of test stimuli, settling time, pure electrical test time)

• Increasing complexity (SoC, SiP)

• Signal integrity requirements

• Calibration and de-embedding



4

• Structural test [ E. Acar et al., IEEE Trans. Compu.–Aided Des. 
Integr. Circuits Syst. 2008 ]

 Definition of electrical faults using IFA
 Select test vectors to detect the presumed faults
 Lack of a widely acceptable analog fault model 

• Built-off test 
 Migrate some of the complex functions of the tester 

onto the test board (i.e. test stimulus generators, 
modulator, demodulator etc.) [ S. S. Akbay et al., IEEE 
Trans. on adv. Packaging 2004 ]   

 In-house test board development is challenging

Alternatives to 
Specification-Based Test
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• Alternate/Machine-Learning-Based Test
 Finds the mapping between low-cost measurements 

and performances
 Performance prediction [ P.N. Variyam et al., IEEE Trans. 

Compu.–Aided Des. Integr. Circuits Syst. 2002 ]

 Go/No-Go test [ H. Stratigopoulos et al., IEEE Trans. Compu.–
Aided Des. Integr. Circuits Syst. 2008 ] 

• Built-in test
 Miniature tester on-chip [ M. G. Mendez-Rivera et al., J. 

Electron. Test 2005 ]

 Reconfigure the device under test into a more 
testable form [ G. Huertas et al., IEEE Des. Test Comput. 2002 ] 

 Add on-chip sensors [ S.S Akbay et al., IEEE VLSI Test Symp. 
2005 ] [ M.Cimino et al., IEEE J. of Solid State  Cir. 2008 ] 

Alternatives to 
Specification-Based Test (cont’d)
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Why Built-in Test (BIT)?

• Increases the observability of embedded blocks

• Offers on-chip low-frequency or DC test 
signatures
 Clean signal path, good isolation, noise immunity

 DUT connection to inexpensive tester

• Performances are tested in parallel (fewer test 
configurations and test stimuli)
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BIT with Alternate Test

Performances (P1,..,Pk) BIT measurements
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• DUT performances = f(BIT measurements)

• The analytical expression of f is unknown

• The BIT measurements are related to the DUT 
performances in a complex way
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BIT with Alternate Test (cont’d)  
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• The mapping f is modeled using regression 

functions (alternate test)

• The regression functions are learned based on a 
representative population of devices with process 
variations 

Regression function used 
to predict performance P
BIT measurement “tracks” 
the changes of performance P
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Challenges

• Built-in sensors should:

 Incur low area overhead (also minimizes the 
probability of fault occurrence within the 
sensor)

 Be transparent to the DUT 

 Not increase prohibitively the pin count

 Detect the presence of defects in the DUT

• BIT measurements should “track” the DUT 
behaviour
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Case Study: 2.4GHz CMOS LNA

Performances  Values

S11 (dB) -13.51

S12 (dB) -42.4

S21 (dB) 11.88

S22 (dB) -8.9

NF (dB) 1.513

IIP1 (dBm) -11.04

IIP3 (dBm) 5.92
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Built-in Sensors Studied in this Work 

Non-connected Sensors 
• Dummy Structures & Process Control Monitors (PCM)

 Non-intrusive 

 They are located in close proximity to the DUT, 
they “sense” the same process variations with the 
DUT, thus they track its performances  

Connected sensors
• DC probes

• Envelope detector

• Current sensor
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   Dummy Structures 
• Dummy structures are simple BIT circuits which 

mimic common structures already present in the 
DUT 

Bias circuit with 

current mirror
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  Process Control Monitors (PCMs)

• A PCM is a basic layout component (i.e. capacitor, 
transistor, etc.)

• We use it to monitor a low-level process parameter (i.e. 
capacitance per unit area, reverse saturation current for 
BJTs, etc.)

• In our work, we have used a metal-insulator-metal (MIM) 
PCM.

Layout of MIM Capacitor
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Across-wafer 
variation

• For a process >100nm, inter-die variations are slow-
varying and smooth

• Neighbouring structures within any die are similarly 
affected

• DUT performances and BIT measurements are 
correlated

Principle of Operation of Dummy 
Structures and PCMs

inter-die variations

Lot-to-lot 
variation

Wafer-to-wafer variation
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Across-wafer 
variation

• Intra-die variations affect 
the DUT and the BIT 
structures differently, thus 
they might corrupt the 
correlation

Principle of Operation of Dummy 
Structures and PCMs (cont’d)

Across-die 
(intra-die 
variations)

Channel length variation

Global variation 
(die mean across 
lots and wafers)

Mismatch

• Alternate test can moderate 
this effect
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DC Probes 

• A DC probe can be set up by a
      large resistor

• Two DC probes are placed at:
 The drain of M3 in the biasing 

     stage
 The common node between 

    M1&M2

• Drawback: they do not sense degradation in L, C 
components
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   Envelope Detector and 
   Current Sensor

• Challenges/design constraints:
 Simple architecture and minimum silicon 

area overhead
 High-input impedance (transparent to DUT)
 High input dynamic range
 Wide band of operation

• Advantages:
 Responsive to variations related to L, C, 

components
 Low-frequency test signature that carries RF 

information
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   Envelope Detector (ED)

• 1st stage: Half wave rectifier
 M2 in weak inversion
 Bias current Ipol follows

     through M1
 Vgs of M2 close to Vth

 I > 0 : M2 OFF 
 I < 0 : M2 ON 

• 2nd stage: I - V conversion

• 3rd stage: Low pass filter
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  Built-In Current Sensor (BICS)

• Design proposed by 
        [ Y. Maidon et al., Electron. Let. 1997 ]
 

 Small parasitic resistor ρ 

     provides a voltage drop 

     which unbalances the PMOS

     current mirror 
 Output current is proportional 

     to the RF power supply current

     of the DUT 
 Output current is switched 

     to the input of the envelope 

detector to obtain low-frequency

     signature

 

DUT
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   Characterisation of the Envelope  
   Detector and the Current Sensor

Area 
(µm2)

Band of 
frequency 
(GHz)

Dynamic range 
(dB)

Input 
impedance (kΩ)

Envelope detector 2170 (0.5%) 0.5  – 10 35 1.5 – 11

Current sensor 2190 (0.5%) 0.1 – 10 35.6  ----
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   Characterisation of the LNA with 
BIT Structures

LNA alone LNA with
ED

LNA with
BICS

Co-Design

S11 (dB) -13.51 +0.01 -0.09 +0.1

S12 (dB) -42.4 -0.02 +0.7 +0.6

S21 (dB) 11.88 +0.02 -2.18 -0.07

S22 (dB) -8.9 -0.25 -8.8 -0.4

NF (dB) 1.513 0.01 +0.277 +0.071

IIP1 (dBm) -11.04 -0.21 -1 +0.013

IIP3 (dBm) 5.92 +0.18 -0.51 -0.14
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   Co-Design 
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Layout of the Final Chip
• Designed with ST Microelectronics 0.25 µm BiCMOS7RF

DUMMY

BICS

ED PCM

   DECODER

DC  probes
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   Alternate Test Predictions

• The BIT measurements are mapped to the performances 
of the LNA using the alternate test paradigm

• Regression functions are trained using 700 post-layout 
Monte Carlo instances

• The RMS prediction error on an independent validation 
set (300 Monte Carlo instances) is used to evaluate the 
alternate test
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RMS prediction errors (in %)

S11 S12 S21 S22 NF 1-dB CP IIP3

ALL  BIT
Structures

1.34 0.43 0.70 2.9 1.20 1.4 3.11

Dummy 
PCM

1.69 0.45 0.93 3.29 1.95 1.78 3.4
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Catastrophic Fault Analysis

• We injected 23 catastrophic faults at the layout 
level including all possible short- and open-
circuits across the components of the LNA

• 17 faults are detected by the two DC probes 

• 6 faults are detected by the envelope detector

• Current sensor is unnecessary for this particular 
model of catastrophic fault

S11 S12 S21 S22 NF 1-dB CP IIP3

Dummy 
PCM
DC probes
ED

1.41 0.44 0.83 3.1 1.70 1.57 3.23

 RMS prediction errors (in %)
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Conclusions

• We exploit the existing inter-die variations to 
predict DUT performances from non-intrusive 
sensors (dummy structures and process control 
monitors)

• These sensors “sense” the same variations with 
the DUT, thus the sensor measurements “track” 
the DUT performances

• In addition, DC probes, an envelope detector and 
a current sensor are co-designed with the DUT to 
detect catastrophic faults injected at the layout 
level

• The current sensor is unnecessary
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Future Work

• Evaluation of proposed sensors in terms of test escape 
and yield loss 
[ H. Stratigopoulos et al., IEEE Trans. Compu.–Aided Des. Integr. Circuits Syst. 2009 ] 

• Expand the library of sensors with emphasis to non-
intrusive sensors

• Chip fabrication (in the process of transferring the 
design to a new technology)

• Use the same techniques for testing RF systems 
(receiver, transmitter) in terms of system level 
specification (BER, EVM)
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