JOURNÉES SCIENTIFIQUE SEMBA 2010 ESCANDILLE, AUTRANS, 18 ET 19 OCTOBRE 2010

Design for low cost test of RF circuits and systems

Louay ABDALLAH Haralampos-G. STRATIGOPOULOS Salvador MIR Laboratoire TIMA, Grenoble, France

Outline

- Challenges in RF test
- Alternatives to specification-based test

- Dummy structures and PCMs
- DC probes
- Envelope Detector
- Current Sensor

Introduction

Built-in test combined with alternate test Case study: 2.4 GHz CMOS LNA Built-in sensors

Alternate test and fault coverage results Conclusions and future work

Challenges in RF test

- . High cost Automatic Test Equipment (ATE)
- . Long test times due to:
 - Large number of RF performances
 - Sequential approach to test each performance (switching between test configurations, application of test stimuli, settling time, pure electrical test time)

- Increasing complexity (SoC, SiP)
- Signal integrity requirements
- Calibration and de-embedding

Alternatives to Specification-Based Test

- **Structural test** [E. Acar et al., *IEEE Trans. Compu.–Aided Des. Integr. Circuits Syst.* 2008]
 - Definition of electrical faults using IFA
 - Select test vectors to detect the presumed faults
 - Lack of a widely acceptable analog fault model

Built-off test

- Migrate some of the complex functions of the tester onto the test board (i.e. test stimulus generators, modulator, demodulator etc.) [S. S. Akbay et al., *IEEE Trans. on adv. Packaging 2004*]
- In-house test board development is challenging

Alternatives to Specification-Based Test (cont'd)

Built-in test

- Miniature tester on-chip [M. G. Mendez-Rivera et al., J. Electron. Test 2005]
- Reconfigure the device under test into a more testable form [G. Huertas et al., IEEE Des. Test Comput. 2002]
- Add on-chip sensors [S.S Akbay et al., IEEE VLSI Test Symp. 2005] [M.Cimino et al., IEEE J. of Solid State Cir. 2008]

Alternate/Machine-Learning-Based Test

- Finds the mapping between low-cost measurements and performances
- Performance prediction [P.N. Variyam et al., IEEE Trans. Compu.-Aided Des. Integr. Circuits Syst. 2002]
- Go/No-Go test [H. Stratigopoulos et al., IEEE Trans. Compu.– Aided Des. Integr. Circuits Syst. 2008]

Outline

- Challenges in RF test
- Alternatives to specification-based test

combined with alternate test

GHz CMOS LNA

- Dummy structures and PCMs
- DC probes
- Envelope Detector
- Current Sensor

and fault coverage results

and future work

Introduction

Built-in test

Case study: 2.4

Built-in sensors

Alternate test

Conclusions

Why Built-in Test (BIT)?

- Increases the observability of embedded blocks
- Offers on-chip low-frequency or DC test signatures
 - Clean signal path, good isolation, noise immunity
 - DUT connection to inexpensive tester
- Performances are tested in parallel (fewer test configurations and test stimuli)

BIT with Alternate Test

- **DUT performances =** *f*(**BIT measurements**)
- The analytical expression of *f* is unknown
- The BIT measurements are related to the DUT performances in a complex way

BIT with Alternate Test (cont'd)

- The mapping *f* is modeled using regression functions (alternate test)
- The regression functions are learned based on a representative population of devices with process variations

BEgreeaisurémentibitrasks" theochainges roor performance P

Challenges

- BIT measurements should "track" the DUT behaviour
- Built-in sensors should:
 - Incur low area overhead (also minimizes the probability of fault occurrence within the sensor)
 - Be transparent to the DUT
 - Not increase prohibitively the pin count
 - Detect the presence of defects in the DUT

Outline

- Challenges in RF test
- Alternatives to specification-based test

combined with alternate test

GHz CMOS LNA

- Dummy structures and PCMs
- DC probes
- Envelope Detector
- Current Sensor

and fault coverage results

and future work

Introduction

Built-in test

Case study: 2.4

Built-in sensors

Alternate test

Conclusions

Case Study: 2.4GHz CMOS LNA

Performances	Values
S11 (dB)	-13.51
S12 (dB)	-42.4
S21 (dB)	11.88
S22 (dB)	-8.9
NF (dB)	1.513
IIP1 (dBm)	-11.04
IIP3 (dBm)	5.92

Outline

- Challenges in RF test
- Alternatives to specification-based test

combined with alternate test

GHz CMOS LNA

- Dummy structures and PCMs
- DC probes
- Envelope Detector
- Current Sensor

and fault coverage results

and future work

Introduction

Built-in test

Case study: 2.4

Built-in sensors

Alternate test

Conclusions

Built-in Sensors Studied in this Work

Non-connected Sensors

- Dummy Structures & Process Control Monitors (PCM)
 - Non-intrusive
 - They are located in close proximity to the DUT, they "sense" the same process variations with the DUT, thus they track its performances

Connected sensors

- DC probes
- Envelope detector
- Current sensor

Dummy Structures

 Dummy structures are simple BIT circuits which mimic common structures already present in the DUT

Process Control Monitors (PCMs)

- A PCM is a basic layout component (i.e. capacitor, transistor, etc.)
- We use it to monitor a low-level process parameter (i.e. capacitance per unit area, reverse saturation current for BJTs, etc.)
- In our work, we have used a metal-insulator-metal (MIM) PCM.

Layout of MIM Capacitor

Principle of Operation of Dummy Structures and PCMs

inter-die variations

- For a process >100nm, inter-die variations are slowvarying and smooth
- Neighbouring structures within any die are similarly affected
- DUT performances and BIT measurements are correlated

Principle of Operation of Dummy Structures and PCMs (cont'd)

- Intra-die variations affect the DUT and the BIT structures differently, thus they might corrupt the correlation
- Alternate test can moderate this effect

DC Probes

- A DC probe can be set up by a large resistor
- Two DC probes are placed at:
 - The drain of M3 in the biasing stage
 - The common node between M1&M2

Drawback: they do not sense degradation in L, C components

Envelope Detector and Current Sensor

- Advantages:
 - Responsive to variations related to L, C, components
 - Low-frequency test signature that carries RF information
- Challenges/design constraints:
 - Simple architecture and minimum silicon area overhead
 - High-input impedance (transparent to DUT)
 - High input dynamic range
 - Wide band of operation

Envelope Detector (ED)

Built-In Current Sensor (BICS)

- Design proposed by [Y. Maidon et al., *Electron. Let.* 1997]
 - Small parasitic resistor p provides a voltage drop which unbalances the PMOS current mirror
 - Output current is proportional to the RF power supply current of the DUT
 - Output current is switched to the input of the envelope detector to obtain low-frequency signature

Characterisation of the Envelope Detector and the Current Sensor

Characterisation of the LNA with BIT Structures

	LNA alone	LNA with ED	LNA with BICS	Co-Design
S11 (dB)	-13.51	+0.01	-0.09	+0.1
S12 (dB)	-42.4	-0.02	+0.7	+0.6
S21 (dB)	11.88	+0.02	-2.18	-0.07
S22 (dB)	-8.9	-0.25	-8.8	-0.4
NF (dB)	1.513	0.01	+0.277	+0.071
IIP1 (dBm)	-11.04	-0.21	-1	+0.013
IIP3 (dBm)	5.92	+0.18	-0.51	-0.14

Co-Design

Layout of the Final Chip

• Designed with ST Microelectronics 0.25 µm BiCMOS7RF

Outline

- Challenges in RF test
- Alternatives to specification-based test

combined with alternate test

GHz CMOS LNA

- Dummy structures and PCMs
- DC probes
- Envelope Detector
- Current Sensor

and fault coverage results

and future work

Introduction

Built-in test

Case study: 2.4

Built-in sensors

Alternate test

Conclusions

Alternate Test Predictions

- The BIT measurements are mapped to the performances of the LNA using the alternate test paradigm
- Regression functions are trained using 700 post-layout Monte Carlo instances
- The RMS prediction error on an independent validation set (300 Monte Carlo instances) is used to evaluate the alternate test \sqrt{N}

$$\sum_{i=100}^{100} P_{i,nom}$$

$$\frac{\sum_{j=1}^{N} \hat{P}_{i,j} - \hat{P}_{i,j}}{N}$$

	S11	S12	S21	S22	NF	1-dB CP	IIP3
ALL BIT Structures	1.34	0.43	0.70	2.9	1.20	1.4	3.11
Dummy PCM	1.69	0.45	0.93	3.29	1.95	1.78	3.4

RMS prediction errors (in %)

Catastrophic Fault Analysis

- We injected 23 catastrophic faults at the layout level including all possible short- and opencircuits across the components of the LNA
- 17 faults are detected by the two DC probes
- 6 faults are detected by the envelope detector
- Current sensor is unnecessary for this particular model of catastrophic fault

	S11	S12	S21	S22	NF	1-dB CP	IIP3
Dummy PCM DC probes ED	1.41	0.44	0.83	3.1	1.70	1.57	3.23

RMS prediction errors (in %)

Conclusions

- We exploit the existing inter-die variations to predict DUT performances from non-intrusive sensors (dummy structures and process control monitors)
- These sensors "sense" the same variations with the DUT, thus the sensor measurements "track" the DUT performances
- In addition, DC probes, an envelope detector and a current sensor are co-designed with the DUT to detect catastrophic faults injected at the layout level
- The current sensor is unnecessary

Future Work

 Evaluation of proposed sensors in terms of test escape and yield loss

[H. Stratigopoulos et al., IEEE Trans. Compu.–Aided Des. Integr. Circuits Syst. 2009]

- Expand the library of sensors with emphasis to nonintrusive sensors
- Chip fabrication (in the process of transferring the design to a new technology)
- Use the same techniques for testing RF systems (receiver, transmitter) in terms of system level specification (BER, EVM)