
Assertion-Based Test Oracles for
Home Automation Systems

Ajitha Rajan
Lydie du Bousquet

Yves Ledru
German Vega

Jean-Luc Richier

Team VASCO, LIG Grenoble

2

Home Automation System (HAS)

Facilitate the automation of a private home to
improve the comfort and security of its
residents.

Television

Game
Player

Speakers

DVD Player

Theatre
Integrated

Service

Air
Conditioner

Lights

3

Verification of HAS

Main Challenge

• Verifying behavior in the presence of
dynamic reconfigurations in the application
 Dynamic change in availability of services
 Dynamic change in bindings between services

Architecture and configuration of the HAS
and its services evolve during run-time.

4

Verification of HAS

Television

Game
Player

Speakers

DVD Player

Theatre
Integrated

Service

Air
Conditioner

Lights

Mobile Video
Player

5

Verification of HAS

Two testing problems

1. The need for test oracles that observe and
check behavior during dynamic
reconfigurations

2. The need to generate tests that involve
dynamic service reconfigurations

6

Framework for HAS

• The HAS was created using the H-Omega
framework, built on top of OSGi and iPOJO

• Component is the central concept

• Component metadata describes and
configures the component

7

Temperature Control Service

Conditions for economical usage

Temp Diff < 10 1 Heater

Temp Diff 10 to 20 <= 3 Heaters

Temp Diff > 20 All Heaters

Dynamic aspect in the service

1. Heaters may appear/disappear

2. Depending on temp difference, num
of active heaters in the room keeps
changing. LCD display should be up
to date.

8

Temperature Control Service
public class TempCtrl {
 private Heater[] m_heaters;
 private LCD m_lcd;
 …..
 …..
}

TempCtrl Service

POJO Component

<component classname="...TempCtrl">
 <requires filter="(location=livingroom)"

 field="m_lcd“/>
 <requires filter="(location=livingroom)"

 field="m_heaters“/>
 ...
</component>

iPOJO Metadata

9

JML Assertion Language

• To express formal properties on classes and
methods in Java programs

• Appears within special Java comments /*@...@*/
or starting with //@

• Three kinds of assertions: Class invariants
(invariant clause), method pre-conditions (requires
clause) and post-conditions (ensures clause)

//@ ensures ((isrunning && (m_heaters.length >=3) &&
 (tempdiff >=10) && (tempdiff < 20))

 ==> (num_running ==3));

10

JML Assertion Language

• To express formal properties on classes and methods
in Java programs

• Appears within special Java comments /*@...@*/ or
starting with //@

• Three kinds of assertions: Class invariants (invariant
clause), method pre-conditions (requires clause) and
post-conditions (ensures clause)

• JML Runtime Assertion Checker (RAC) allows JML
specifications to be used as run-time monitors.

11

Test Oracles Using JML
Specifications

• Test oracles that monitor run-time behavior
have been proposed in the past

• These existing approaches have never been
used for application like the HAS
 Software architecture is dynamically evolving

 Bindings among components changes
 Components available for composition changes

• We need to enhance existing approaches so
they can monitor service behavior during
dynamic service reconfigurations.

12

Our Approach

1. Identify potential sources of dynamic behavior
in the service

2. Place probes in the service architecture to
communicate dynamic changes at identified
sources to listener methods.

3. Associate JML assertions to the listener
methods.

4. When dynamic changes occur, JML assertions
are executed and checked for violations at run
time.

13

Service Dependency Handling in
H-Omega

Field Injection Mechanism
<component classname =

 “…TempCtrl”>

 <requires filter=

 “(loc=livingroom)”

 field=“m_heaters”>

…

</component>

14

Service Dependency Handling in
H-Omega

Field Injection Mechanism
<component classname =

 “…TempCtrl”>

 <requires filter=

 “(loc=livingroom)”

 field=“m_heaters”>

…

</component>

Method Invocation Mechanism
<component classname =

 “…TempCtrl”>

 <requires>

 <callback type=“bind”

 method=“bindHeater”/>

 <callback type=“unbind”

 method=“unbindHeater”/>

 <\requires>

…

</component>

15

Service Dependency Handling in
H-Omega

Combined Injection Mechanism
<component classname = “…TempCtrl”>

 <requires filter=“(loc=livingroom) field=“m_heaters”>

 <callback type=“bind” method=“bindHeater”/>

 <callback type=“unbind” method=“unbindHeater”/>

 <\requires>

…

</component>

Our approach uses the combined injection mechanism.

Listener Methods

We attach JML assertions to these listener methods.

16

Temperature Control Service
Bind listener method for binding a heater
private synchronized void bindHeater(Heater h) {
 if (isrunning) {
 tempdiff = tempDiff();
 if (((tempdiff < 10) && (num_running < 1))
 ||((tempdiff >= 10) && (tempdiff < 20) && (num_running < 3))

|| (tempdiff > 20)) {
 System.out.println("Binding Heater: " + h.getFriendlyName());
 h.turnOn();
 h.setTargetedTemperature(targetTemp);
 num_running++ ;
 m_lcd.display("Number of heaters active is " +

Integer.toString(num_running));
 }
 }
 // if isrunning is false it means the execute method is not running,
 // so no updates necessary
}

Economic Usage Condition

Activate heater

Update LCD

17

Temperature Control Service
JML specification for bind listener method
// Properties for number of active heaters in the room
// (labeled N1, N2, N3, N4, N5)

N1: //@ ensures (isrunning ==> (num_running <= m_heaters.length));
N2: //@ ensures ((isrunning && (m_heaters.length > 0) && (tempdiff < 10))
 ==> (num_running == 1));
N3: //@ ensures ((isrunning && (m_heaters.length >= 3) && (tempdiff >= 10) &&

 (tempdiff < 20)) ==> (num_running == 3));
N4: //@ ensures ((isrunning && (m_heaters.length < 3) && (tempdiff >= 10) &&

 (tempdiff < 20)) ==> (num_running == m_heaters.length));
N5: //@ ensures ((isrunning && (tempdiff >= 20)) ==>

 (num_running == m_heaters.length));

18

Temperature Control Service
JML specification for bind listener method
// Heater Properties (labeled H1, H2, H3, H4)
H1: //@ ensures isrunning ==> (\forall int i; 0<=i && i<num_running;

m_heaters[i].isOn());
H2: //@ ensures isrunning ==> (\forall int i; num_running<=i &&

i<m_heaters.length; !(m_heaters[i].isOn()));
H3: //@ ensures isrunning ==> (\forall int i; 0<=i && i<num_running;
 m_heaters[i].getTargetedTemperature() == targetTemp);
H4: /*@ ensures ((isrunning && (((tempdiff < 10) && (\old(num_running) < 1))
 ||((tempdiff >= 10) && (tempdiff < 20) && (\old(num_running) < 3))
 ||(tempdiff > 20))) <==> (h.isOn() && (num_running ==

\old(num_running) + 1)));
 @*/

// LCD properties (labeled L1, L2)
L1: //@ invariant (isrunning ==> m_lcd.isOn());
L2: //@ invariant (isrunning ==> m_lcd.getDisplay().equals("Number of heaters

active is " + Integer.toString(num_running)));

19

Evaluation

• Generated tests with dynamic service
reconfigurations for the HAS
 Adapted our existing combinatorial testing tool,

TOBIAS, to achieve this

• Ran the tests and monitored the JML specifications
for violations.

• Created mutated services by seeding faults into the
service that alter service behavior during dynamic
changes.

• Evaluated the effectiveness of the test oracles in
revealing the mutations

20

Evaluation

TestsTestsTests
Test Suite with

dynamic
reconfigurations

TempCtrl
Service in

HAS

Generate using
TOBIAS

Test Pattern

Run Monitor Check for
violations of
JML specs

TestsTestsTests
Mutated
TempCtrl
Services

Seed faults
Run

Check for
violations of
JML specs

Monitor

21

Test Generation using TOBIAS

• Tests are sequences of method calls with different
combinations of input parameter values

• Input is a test pattern that defines the set of test
cases to be generated

• Test pattern exercises different dynamic
reconfigurations and behavior changes in the
services.

• Resulting test suite is converted into a JUnit file
for testing services on the H-Omega platform

22

TOBIAS Test Pattern for TempCtrl

Initial Configuration
Introduce 3 to 5 heaters

Set environment temperature to 5, 20, or 80

Set desired room target temperature to 20, 40, or 100

Activate TempCtrl service

Wait for a fixed time

Dynamic Changes
Add or Remove a heater

Change environment temperature

Wait for a fixed time

Deactivate TempCtrl service

The test pattern
was unfolded into
135 test cases by
TOBIAS

23

Evaluation

TestsTestsTests
Test Suite with

dynamic
reconfigurations

TempCtrl
Service in

HAS

Generate using
TOBIAS

Test Pattern

Run Monitor Check for
violations of
JML specs

135 Test Cases No Violations!

24

Evaluation

TestsTestsTests
Test Suite with

dynamic
reconfigurations

TempCtrl
Service in

HAS

Generate using
TOBIAS

Test Pattern

Run Monitor Check for
violations of
JML specs

TestsTestsTests
Mutated
TempCtrl
Services

Seed faults135 Test Cases No Violations!

25

Fault Seeding

• We seeded faults that alter the behavior of
the TempCtrl service, particularly during
dynamic service reconfigurations

• A fault was seeded in one of four ways:
 Binary Logical Fault
 Relational Fault
 Negation Fault
 Constant Fault

• We created 25 mutated services
 Each mutated service had a single seeded fault

26

Evaluation

TestsTestsTests
Test Suite with

dynamic
reconfigurations

TempCtrl
Service in

HAS

Generate using
TOBIAS

Test Pattern

Run

TestsTestsTests
Mutated
TempCtrl
Services

Seed faults
Run

Check for
violations of
JML specs

Monitor

Violated JML specs in
23 of the 25 mutated
services

27

Evaluation

• The two mutations that remain undetected
could be due to
 Test suite does not exercise the faulty scenario
 JML specifications for the behavior involving

the fault are incorrect or missing
 Fault does not result in any observable change

in service behavior

28

Evaluation

• The two mutations that remain undetected
could be due to
 Test suite does not exercise the faulty scenario
 JML specifications for the behavior involving

the fault are incorrect or missing
 Fault does not result in any observable change

in service behavior
NO

Both undetected mutations, involved faults in the scenario where a
heater appears when the temperture difference is less than 10
degrees.

Created a test case exercising this scenario. Test case violated JML
specifications in bindHeater() listener method.

NO

YES

29

Evaluation

• Our test oracles were effective in revealing
all 25 seeded faults

• JML specifications associated with
bind/unbind listener methods were effective
in revealing erroneous behaviors during
reconfigurations

• Other TOBIAS test patterns that generate
more effective test suites are possible

30

Summary

• We formally specified test oracles for HAS using
JML specifications

• We monitor dynamic service reconfigurations
using listener methods associated to dynamic
events in the architecture

• Conducted a preliminary evaluation of our test
oracles using test cases with dynamic
reconfigurations and seeding faults in an example
service in the HAS.

31

Conclusion & Future Work

• Our proposed approach provides a useful
and effective means for monitoring service
behavior during dynamic reconfigurations

• Explore automatic test generation for
service-oriented applications.

• Conduct a more extensive evaluation on real
world systems in the future.

	Assertion-Based Test Oracles for Home Automation Systems
	Home Automation System (HAS)
	Verification of HAS
	Diapo 4
	Diapo 5
	Framework for HAS
	Temperature Control Service
	Diapo 8
	JML Assertion Language
	Diapo 10
	Test Oracles Using JML Specifications
	Our Approach
	Service Dependency Handling in H-Omega
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Evaluation
	Diapo 20
	Test Generation using TOBIAS
	TOBIAS Test Pattern for TempCtrl
	Diapo 23
	Diapo 24
	Fault Seeding
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Summary
	Conclusion & Future Work

