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The basic net

The outname « emits what it receives from the inname x.

This net has an in port x and out port a.
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The mediator y is provided through a specific inname y.




The exporter
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The exporter

M takes something in type(x) and yields something in type([3).

It exports something in type(x) — type(/3), on «.



The weld or cut

It is the most elementary operation, which «welds» two nets
» through their outname (for left net) and

» through their inname (for the right net).




The weld or cut

It is the most elementary operation, which «welds» two nets
» through their outname (for left net) and

» through their inname (for the right net).

The outname o of M is «welded» to the inname x of N.



The weld or cut

It is the most elementary operation, which «welds» two nets
» through their outname (for left net) and

» through their inname (for the right net).

The outname o of M is «welded» to the inname x of N.

As we are going to be interested to the inverse operation,
we also speak about cut.



The contraction




The weakening

Since terms are linear. Names must occurs.

What do we do when one does not want a name to occurs?




Simplifying nets



cap-cap




More generally
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Actually, by the fact the same term can reduce to two terms

we get a non confluent system.



A touch of syntax
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lambda-calculus, quantification, fixed points, etc.

mediators, exports and welds bind two names :
an outname and an inname.
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Binding names

Unlike most of the languages with bounded variables :
lambda-calculus, quantification, fixed points, etc.

mediators, exports and welds bind two names :
an outname and an inname.

Bounded names wear hats :
For instance :

Mia & x M,

where @ is a binary operator.
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Terms are linear

Terms are linear .

This means that each bound name accurs once and only once.

The same for the free names.



Logical rules

: (JPB-a)a t X(QF[x]ZR) — {
D (yaa)a T x(x.8) — (y.0)

L (YPB-a)a@ f X(x) — JPB-y
t (y.a)a t (PP [x] 2Q) — PGy 2Q

(Q7 t yP)3 t 2R
Q7 t ¥(P3 t 2R)
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The implicative sequent calculus (the rules)

————— (ax)
LAFAA

[EAA rBrFA A B,A
(— L) —— (= R)
A= BFA r-A— B,A

[-AA LAFA

cut
r=A (cut)

M= A M=A
—— (L — Weak) —— (R — Weak)
LAFA FFAA

LAAEA [EAAA
——— (L — Contr) ——— (R — Contr)
LAFA F-AA



Building nets
Simplifying nets
A touch of syntax

A small digression

the implicative sequent calculus
The types

Bending the daggers or activating the cuts

Renaming

«O>r «Fr «=>»

«E)»

DA



Typing *X

(cap)
(xa): T)x:AFAja: A



Typing *X

(cap)
(xa): T)x:AFAja: A

M:TFa:AA N:T,x:BFA M:T,x:AFa:B A

(med) (exp)
Ma [y] xN:T;A— BEFA XMa-g:THB:A— B, A




Typing *X

(cap)
(xa): T)x:AFAja: A

M:TFa:AA N:T,x:BFA M:T,x:AFa:B A
(med) (exp)
Ma [y] xN:T,A— BEFA XxXMa-f:THB:A— B, A
P:TFHa:AA Q:Tyx:AFA
(cut)

P&t XQ:THA



Typing *X

(cap)
(xa): T)x:AFAja: A

M:TFa:AA N:T,x:BFA M:T,x:AFa:B A
(med) (exp)
Ma [y] xN:T,A— BEFA XxXMa-f:THB:A— B, A
P:TFHa:AA Q:Tyx:AFA
(cut)

P&t XQ:THA
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Typing *X

(cap)

(xa): T)x:AFAja: A

M:TFa:AA N:T,x:BFA M:T,x:AFa:B A
(med) (exp)
Ma [y] xN:T,A— BEFA XxXMa-f:THB:A— B, A
P:TFHa:AA Q:Tyx:AFA
(cut)

P&t XQ:THA

M:TEA M:TEA
(L — Weak) (R — Weak)
xo{M}:T)x:AF A {M}oa:TFa:AA
M:T,x:Ay:AFA M:THa:AB:AA
(L — Contr) (R — Contr)

z<§<M]:r,z:A|—A [/\/l>%>’y:rl—’y:A,A
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Curry-Howard-de Bruijn correspondence

Typing rules of xX are implicative sequent rules.

Net reductions correspond to cut elimination.



Curry-Howard-de Bruijn correspondence

Typing rules of xX are implicative sequent rules.

Net reductions correspond to cut elimination.

We did not give all the rules for cut elimination.



Bending the daggers or activating the cuts



How about the case when logical rules are not applicable ?

When Mj is neither y P/ﬁ-a nor (y.a)
or My is neither Pj3 [x] ¥yQ nor (x.53)

in Mla ]L 3<\M2

one “distributes” the “cut” in order to “eliminate” it.
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Bending the dagger or activating the cuts

When x or « is not introduced, one bends the {'s to show in which
direction (left ~# or right X\),
the {'s have to be distributed.
Bending the dagger
(act-L) Pa T XQ =» Pa /* XQ
with P#£y P' -« and P # (y.a)

(act-r) Pa T XQ =» PaXXQ
with Q@ # Q'S [x] yQ" and Q # (x.3)

Terms in which {'s are not bended are called pure.



Left actions

(deact) :

)
(med — deact) :
(cont — dupl) :
)

(weak — cancel) :

(y.oya /* XP w=» (y.a)ya T xP
(VQB-a)a kP =» (yQB-a)a t XP
Through a picture
Through a picture



Rule cont-dupl

_

P X




Rule weak-cancel
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Left propagation

(L1) (y-B)a 7 XP = (y.03), B#a
(13):  (FQB-y)assP =» §(QafXP)Bvy, ~#a
(14): (QB [z2] yR)A # XP =» (Qa / XP)3 [z] R, x € Q
(15): (QB t yR)A # XP =» (Qa / xP)3 t yR, xe @
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Renaming

1. PS5 7 Z(z.c) = Pla/d], if P is pure.
2. (z.a)a T XP =» P[z/x], if P is pure.



A question

How about describing real nets?
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