*X

Steffen van Bakkel, Stéphane Lengrand, Pierre Lescanne Dragiša Žunić

Quelques mots clés

- Les fils.
- ▶ La reconfiguration des architectures.

Quelques mots clés

- Les fils.
- ▶ La reconfiguration des architectures.
- ► Mine à logiques.

Connections are typed.

Connections are typed.

Building nets

Simplifying nets

A touch of syntax

A small digression: the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

The basic net

The outname α emits what it receives from the inname x.

The basic net

The outname α emits what it receives from the inname x.

This net has an in port x and out port α .

The mediator

M et N are connected through

- ▶ the inname x for N
- \blacktriangleright and the outname α for M.

The mediator

The mediator

The mediator y is provided through a specific inname y.

The exporter

M takes something in type(x) and yields something in $type(\beta)$.

The exporter

M takes something in type(x) and yields something in $type(\beta)$.

It exports something in $type(x) \rightarrow type(\beta)$, on α .

The weld or cut

It is the most elementary operation, which «welds» two nets

- ▶ through their outname (for left net) and
- through their inname (for the right net).

The weld or cut

It is the most elementary operation, which «welds» two nets

- ▶ through their outname (for left net) and
- through their inname (for the right net).

The outname α of M is «welded» to the inname x of N.

The weld or cut

It is the most elementary operation, which «welds» two nets

- ▶ through their outname (for left net) and
- through their inname (for the right net).

The outname α of M is «welded» to the inname x of N.

As we are going to be interested to the inverse operation, we also speak about cut.

The contraction

The weakening

Since terms are linear. Names must occurs.

What do we do when one does not want a name to occurs?

Building nets

Simplifying nets

A touch of syntax

A small digression : the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

cap-cap

More generally

exp-med

exp-med

Actually, by the fact the same term can reduce to two terms

we get a non confluent system.

Building nets

Simplifying nets

A touch of syntax

A small digression: the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

Binding names

Unlike most of the languages with bounded variables : lambda-calculus, quantification, fixed points, etc.

mediators, exports and welds bind **two** names : an outname and an inname.

Binding names

Unlike most of the languages with bounded variables : lambda-calculus, quantification, fixed points, etc.

mediators, exports and welds bind **two** names : an outname and an inname.

Bounded names wear hats:

Binding names

Unlike most of the languages with bounded variables : lambda-calculus, quantification, fixed points, etc.

mediators, exports and welds bind **two** names : an outname and an inname.

Bounded names wear hats:

For instance:

$$M_1\widehat{\alpha} \oplus \widehat{x}M_2$$

where \oplus is a binary operator.

Terms are linear

Terms are linear.

This means that each bound name accurs once and only once.

The same for the free names.

Logical rules

$$\begin{array}{lll} (\textit{exp}-\textit{med}) & : & (\widehat{y}\ P\ \widehat{\beta}\cdot\alpha)\widehat{\alpha}\ \dagger\ \widehat{x}(Q\widehat{\gamma}\ [x]\ \widehat{z}R) & \rightarrow & \left\{ \begin{array}{lll} (Q\widehat{\gamma}\ \dagger\ \widehat{y}P)\widehat{\beta}\ \dagger\ \widehat{z}R \\ Q\widehat{\gamma}\ \dagger\ \widehat{y}(P\widehat{\beta}\ \dagger\ \widehat{z}R) \end{array} \right. \\ (\textit{cap}-\textit{ren}) & : & \langle y.\alpha\rangle\widehat{\alpha}\ \dagger\ \widehat{x}\langle x.\beta\rangle & \rightarrow & \langle y.\beta\rangle \\ (\textit{exp}-\textit{ren}) & : & (\widehat{y}\ P\ \widehat{\beta}\cdot\alpha)\widehat{\alpha}\ \dagger\ \widehat{x}\langle x.\gamma\rangle & \rightarrow & \widehat{y}\ P\ \widehat{\beta}\cdot\gamma \\ (\textit{med}-\textit{ren}) & : & \langle y.\alpha\rangle\widehat{\alpha}\ \dagger\ \widehat{x}(P\widehat{\beta}\ [x]\ \widehat{z}Q) & \rightarrow & P\widehat{\beta}\ [y]\ \widehat{z}Q \end{array}$$

Building nets

Simplifying nets

A touch of syntax

A small digression : the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

$$\frac{}{\Gamma,A\vdash\Delta,A}$$
 (ax)

$$\frac{}{\Gamma,A\vdash\Delta,A}$$
 (ax)

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, B \vdash \Delta}{\Gamma, A \to B \vdash \Delta} (\to L) \qquad \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta} (\to R)$$

$$\overline{\Gamma,A\vdash\Delta,A}$$
 (ax)

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, B \vdash \Delta}{\Gamma, A \to B \vdash \Delta} (\to L) \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta} (\to R)$$

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} (cut)$$

$$\frac{}{\Gamma,A\vdash\Delta,A}$$
 (ax)

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, B \vdash \Delta}{\Gamma, A \to B \vdash \Delta} \left(\to L \right) \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta} \left(\to R \right)$$

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} \left(\text{cut} \right)$$

$$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} (L - Weak) \qquad \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta} (R - Weak)$$

$$\frac{}{\Gamma,A\vdash\Delta,A}$$
 (ax)

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, B \vdash \Delta}{\Gamma, A \to B \vdash \Delta} (\to L) \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta} (\to R)$$

$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} (cut)$$

$$\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} (L - Weak) \qquad \frac{\Gamma \vdash \Delta}{\Gamma \vdash A, \Delta} (R - Weak)$$

$$\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \left(L - Contr \right) \qquad \frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta} \left(R - Contr \right)$$

Building nets

Simplifying nets

A touch of syntax

A small digression: the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

 $\frac{}{\langle x.\alpha\rangle : \Gamma, x : A \vdash \Delta, \alpha : A} \text{(cap)}$

$$\frac{}{\langle x.\alpha\rangle : \Gamma, x : A \vdash \Delta, \alpha : A} (cap)$$

$$\frac{M:\Gamma\vdash\alpha:A,\Delta}{M\widehat{\alpha}\;[y]\;\widehat{\times}N:\Gamma,A\to B\vdash\Delta} \text{ (med)} \qquad \frac{M:\Gamma,x:A\vdash\alpha:B,\Delta}{\widehat{\times}\;M\;\widehat{\alpha}\cdot\beta:\Gamma\vdash\beta:A\to B,\Delta} \text{ (exp)}$$

$$\frac{}{\langle x.\alpha \rangle : \Gamma, x : A \vdash \Delta, \alpha : A}$$
 (cap)

$$\frac{M:\Gamma\vdash\alpha:A,\Delta}{M\widehat{\alpha}\;[y]\;\widehat{\times}N:\Gamma,A\to B\vdash\Delta} \;(\textit{med}) \qquad \frac{M:\Gamma,x:A\vdash\alpha:B,\Delta}{\widehat{\times}\;M\;\widehat{\alpha}\cdot\beta:\Gamma\vdash\beta:A\to B,\Delta} \;(\textit{exp})$$

$$\frac{P:\Gamma\vdash\alpha:A,\Delta}{P\widehat{\alpha}\ \ \dagger\ \widehat{\times}Q:\Gamma\vdash\Delta} \underbrace{Q:\Gamma,x:A\vdash\Delta}_{(cut)}$$

$$\frac{}{\langle x.\alpha\rangle : \Gamma, x : A \vdash \Delta, \alpha : A} \text{(cap)}$$

$$\frac{M:\Gamma\vdash\alpha:A,\Delta\qquad\qquad N:\Gamma,x:B\vdash\Delta}{M\widehat{\alpha}\;[y]\;\widehat{x}N:\Gamma,A\to B\vdash\Delta}\;(\textit{med})\qquad \frac{M:\Gamma,x:A\vdash\alpha:B,\Delta}{\widehat{x}\;M\;\widehat{\alpha}\cdot\beta:\Gamma\vdash\beta:A\to B,\Delta}\;(\textit{exp})$$

$$\frac{P:\Gamma\vdash\alpha:A,\Delta}{P\widehat{\alpha}\ \dagger\ \widehat{x}Q:\Gamma\vdash\Delta} (cut)$$

$$\frac{M:\Gamma\vdash\Delta}{x\circ\{M\}:\Gamma,x:A\vdash\Delta}(L-Weak)\qquad \frac{M:\Gamma\vdash\Delta}{\{M\}\circ\alpha:\Gamma\vdash\alpha:A,\Delta}(R-Weak)$$

$$\frac{}{\langle x.\alpha \rangle : \Gamma, x : A \vdash \Delta, \alpha : A}$$
(cap)

$$\frac{M:\Gamma\vdash\alpha:A,\Delta\qquad\qquad N:\Gamma,x:B\vdash\Delta}{M\widehat{\alpha}\;[y]\;\widehat{\times}N:\Gamma,A\to B\vdash\Delta}\;(\textit{med})\qquad \frac{M:\Gamma,x:A\vdash\alpha:B,\Delta}{\widehat{\times}\;M\;\widehat{\alpha}\cdot\beta:\Gamma\vdash\beta:A\to B,\Delta}\;(\textit{exp})$$

$$\frac{P:\Gamma\vdash\alpha:A,\Delta}{P\widehat{\alpha}\ \dagger\ \widehat{\times}Q:\Gamma\vdash\Delta}(cut$$

$$\frac{M:\Gamma\vdash\Delta}{x\circ\{M\}:\Gamma,x:A\vdash\Delta}(L-Weak)\qquad \frac{M:\Gamma\vdash\Delta}{\{M\}\circ\alpha:\Gamma\vdash\alpha:A,\Delta}(R-Weak)$$

$$\frac{M:\Gamma,x:A,y:A\vdash\Delta}{z<\widehat{\gamma}\langle M]:\Gamma,z:A\vdash\Delta} \frac{M:\Gamma\vdash\alpha:A,\beta:A,\Delta}{[M)^{\widehat{\alpha}}_{\widehat{\beta}}>\gamma:\Gamma\vdash\gamma:A,\Delta} (R-Contr)$$

Typing rules of $\ast\mathcal{X}$ are implicative sequent rules.

Net reductions correspond to cut elimination.

Typing rules of $*\mathcal{X}$ are implicative sequent rules.

Net reductions correspond to cut elimination.

We did not give all the rules for cut elimination.

Building nets

Simplifying nets

A touch of syntax

A small digression: the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

How about the case when logical rules are not applicable?

```
When M_1 is neither \widehat{y} P \widehat{\beta} \cdot \alpha nor \langle y.\alpha \rangle or M_2 is neither P\widehat{\beta}[x] \widehat{y}Q nor \langle x.\beta \rangle in M_1\widehat{\alpha} \dagger \widehat{x}M_2
```

one "distributes" the "cut" in order to "eliminate" it.

When x or α is not introduced, one bends the †'s to show in which direction (left \nearrow or right \nwarrow), the †'s have to be distributed.

Bending the dagger

(act-L)
$$P\widehat{\alpha} \dagger \widehat{x}Q \longrightarrow P\widehat{\alpha} \nearrow \widehat{x}Q$$

with $P \neq \widehat{y} P' \widehat{\beta} \cdot \alpha$ and $P \neq \langle y.\alpha \rangle$
(act-R) $P\widehat{\alpha} \dagger \widehat{x}Q \longrightarrow P\widehat{\alpha} \nwarrow \widehat{x}Q$
with $Q \neq Q'\widehat{\beta} [x] \widehat{y}Q''$ and $Q \neq \langle x.\beta \rangle$

When x or α is not introduced, one bends the †'s to show in which direction (left \nearrow or right \nwarrow), the †'s have to be distributed.

Bending the dagger

(act-L)
$$P\widehat{\alpha} \dagger \widehat{x}Q \longrightarrow P\widehat{\alpha} \nearrow \widehat{x}Q$$

with $P \neq \widehat{y} P' \widehat{\beta} \cdot \alpha$ and $P \neq \langle y.\alpha \rangle$
(act-R) $P\widehat{\alpha} \dagger \widehat{x}Q \longrightarrow P\widehat{\alpha} \nwarrow \widehat{x}Q$
with $Q \neq Q'\widehat{\beta}[x]\widehat{y}Q''$ and $Q \neq \langle x.\beta \rangle$

Terms in which †'s are not bended are called pure.

Left actions

Rule cont-dupl

Rule weak-cancel

Left propagation

```
(L1): \langle y.\beta \rangle \widehat{\alpha} \nearrow \widehat{x}P \longrightarrow \langle y.\beta \rangle, \beta \neq \alpha

(L3): (\widehat{y} Q \widehat{\beta} \cdot \gamma) \widehat{\alpha} \nearrow \widehat{x}P \longrightarrow \widehat{y} (Q \widehat{\alpha} \nearrow \widehat{x}P) \widehat{\beta} \cdot \gamma, \gamma \neq \alpha

(L4): (Q \widehat{\beta} [z] \widehat{y}R) \widehat{\alpha} \nearrow \widehat{x}P \longrightarrow (Q \widehat{\alpha} \nearrow \widehat{x}P) \widehat{\beta} [z] \widehat{y}R, x \in Q

(L5): (Q \widehat{\beta} \dagger \widehat{y}R) \widehat{\alpha} \nearrow \widehat{x}P \longrightarrow (Q \widehat{\alpha} \nearrow \widehat{x}P) \widehat{\beta} \dagger \widehat{y}R, x \in Q
```

Building nets

Simplifying nets

A touch of syntax

A small digression: the implicative sequent calculus

The types

Bending the daggers or activating the cuts

Renaming

Renaming

- 1. $P\hat{\delta} \dagger \hat{z}\langle z.\alpha \rangle \longrightarrow P[\alpha/\delta]$, if P is pure.
- 2. $\langle z.\alpha\rangle \hat{\alpha} \dagger \hat{x}P \longrightarrow P[z/x]$, if P is pure.

A question

How about describing real nets?

